

Math Teachers Press, Inc.

4850 Park Glen Road, Minneapolis, MN 55416 phone (800) 852-2435 fax (952) 546-7502

Illinois Learning Standards for Mathematics Correlated to Moving with Math-by-Topic Level D Grade 8

		Student Book	Skill Builders
8.NS	THE NUMBER SYSTEM		
	Know that there are numbers that are not rational, and		
_	approximate them by rational numbers.	DV 00	
1.	Know that numbers that are not rational are called irrational.	DV : 23	
	Understand informally that every number has a decimal expansion;		
	for rational numbers show that the decimal expansion repeats		
	eventually, and convert a decimal expansion which repeats		
	eventually into a rational number.		
2.	Use rational approximations of irrational numbers to compare the		
	size of irrational numbers, locate them approximately on a number		
	line diagram, and estimate the value of expressions (e.g., π^2). For		
	example, by truncating the decimal expansion of $\sqrt{2}$, show that $\sqrt{2}$		
	is between 1 and 2, then between 1.4 and 1.5, and explain how to		
	continue on to get better approximations.		
3.EE	EXPRESSIONS AND EQUATIONS		
J. L.L	Work with radicals and integer exponents.		
1.	Know and apply the properties of integer exponents to generate	DI : 28-30	6-2
	equivalent numerical expressions. For example, $3^2 \times 3^{-5} = 3^{-3} = 1/3^3$		
	= 1/27.		
2.	Use square root and cube root symbols to represent solutions to	DIV : 32	54-1
۷.		DIV. 02	J4-1
	equations of the form $x^2 = p$ and $x^3 = p$, where p is a positive		
	rational number. Evaluate square roots of small perfect squares		
2	and cube roots of small perfect cubes. Know that J2 is irrational.	DI: 34-36	57-1, 57-2, 57-3
3.	Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities,	DI. 34-30	31-1, 31-2, 31-3
	and to express how many times as much one is than the other. For		
	example, estimate the population of the United States as 3×10^8		
	and the population of the world as 7×10^9 , and determine that the		
4.	Perform operations with numbers expressed in scientific notation,		
	including problems where both decimal and scientific notation are		
	used. Use scientific notation and choose units of appropriate size		
	for measurements of very large or very small quantities (e.g., use		
	millimeters per year for seafloor spreading). Interpret scientific		
	notation that has been generated by technology.		
	Understand the connections between proportional		
	relationships, lines, and linear equations.		11

		Student Book	Skill Builders
5.	Graph proportional relationships, interpreting the unit rate as the		
	slope of the graph. Compare two different proportional		
	relationships represented in different ways. For example, compare		
	a distance-time graph to a distance-time equation to determine		
	which of two moving objects has greater speed.		
6.	Use similar triangles to explain why the slope <i>m</i> is the same		
	between any two distinct points on a non-vertical line in the		
	coordinate plane; derive the equation $y = mx$ for a line through the		
	origin an the equation $y = mx + b$ for a line intercepting the vertical		
	axis at b.		
	Analyze and solve linear equations and pairs of simultaneous		
	linear equations.		
7.	Solve linear equations in one variable.	DV : 48-56	50-4
a.	Give examples of linear equations in one variable with one solution,		
	infinitely many solutions, or no solutions. Show which of these		
	possibilities is the case by successively transforming the given		
	equation into simpler forms, until an equivalent equation of the		
	form $x = a$, $a = a$, or $a = b$ results (where a and b are different		
	numbers).		
b.	Solve linear equations with rational number coefficients, including	DV: 54, 55	50-2, 50-3, 50-4
	equations whose solutions require expanding expressions using		
	the distributive property and collecting like terms.		
8.	Analyze and solve pairs of simultaneous linear equations.		
a.	Understand that solutions to a system of two linear equations in		
	two variables correspond to points of intersection of their graphs,		
	because points of intersection satisfy both equations		
	simultaneously.		
b.	Solve systems of two linear equations in two variables		
	algebraically, and estimate solutions by graphing the equations.		
	Solve simple cases by inspection. For example, $3x + 2y = 5$ and $3x$		
	+ 2y = 6 have no solution because $3x + 2y$ cannot simultaneously be		
	5 and 6.		
C.	Solve real-world and mathematical problems leading to two linear		
	equations in two variables. For example, given coordinates for two		
	pairs of points, determine whether the line through the first pair of		
	points intersects the line through the second pair.		
8.F	FUNCTIONS		
J.1	Define, evaluate, and compare functions.		
1.	Understand that a function is a rule that assigns to each input	DV: 66, 67	
••	exactly one output. The graph of a function is the set of ordered	55, 57	
	pairs consisting of an input and the corresponding output.		
2.	Compare properties of two functions each represented in a	DV: 66, 67	
	different way (algebraically, graphically, numerically in tables, or by	211 00, 07	
	verbal descriptions). For example, given a linear function		
	represented by a table of values and a linear function represented		
	by an algebraic expression, determine which function has the		
	greater rate of change.		

		Student Book	Skill Builders
3.	Interpret the equation $y = mx + b$ as defining a linear function, whose graph is a straight line; give examples of functions that are		
	not linear. For example, the function $A = s^2$ giving the area of a square as a function of its side length is not linear because its graph contains the points (1,1), (2,4), and (3,0), which are not on a straight line.		
	Use functions to model relationships between quantities.		
4.	Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x,y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation of it models, and in terms of its graph or a table of values.		
5.	Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.		
8.G	GEOMETRY		
	Understand congruence and similarity using physical models,		
	transparencies, or geometry software.		
1.	Verify experimentally the properties of rotations, reflections, and translations:	DIV : 20	
a.	Lines are taken to lines, and line segments to line segments of the same length.	DIV: 22	
b.	Angles are taken to angles of the same measure.	DIV: 22	
C.	Parallel lines are taken to parallel lines.		
2.	Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.	DIV: 20	32-4
3.	Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.		
4.	Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.	DIV: 29, 30	
5.	Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.	DIV: 25, 26	33-2, 52-1
	Understand and apply the Dythagoroon Theorem		
6.	Understand and apply the Pythagorean Theorem Explain a proof of the Pythagorean Theorem and its converse.		
7.	Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.	DIV: 34	54-2

		Student Book	Skill Builders
8.	Apply the Pythagorean Theorem to find the distance between two		
	points in a coordinate system.		
	Solve real-world and mathematical problems involving volume		
9.	of cylinders, cones, and spheres. Know the formulas for the volumes of cones, cylinders, and		41-3
9.	spheres and use them to solve real-world and mathematical		41-3
	problems.		
	probleme.		
8.SP	STATISTICS AND PROBABILITY		
	Investigate patterns of association in bivariate data.		
1.	Construct and interpret scatter plots for bivariate measurement		
	data to investigate patterns of association between two quantities.		
	Describe patterns such as clustering, outliers, positive or negative		
	association, linear association, and nonlinear association.		
2.	Know that straight lines are widely used to model relationships		
	between two quantitative variables. For scatter plots that suggest a		
	linear association, informally fit a straight line, and informally		
	assess the model fit by judging the closeness of the data points to the line.		
3.	Use the equation of a linear model to solve problems in the context		
0.	of bivariate measurement data, interpreting the slope and intercept.		
	For example, in a linear model for a biology experiment, interpret a		
	slope of 1.5cm/hr as meaning that an additional hour of sunlight		
	ach day is associated with an additional 1.5cm in mature plant		
	height.		
4.	Understand that patterns of association can also be seen in		
	bivariate categorical data by displaying frequencies and relative		
	frequencies in a two-way table. Construct and interpret a two-way		
	table summarizing data on two categorical variables collected from		
	the same subjects. Use relative frequencies calculated for rows or		
	columns to describe possible association between the two		
	variables. For example, collect data from students in your class on		
	whether or not they have a curfew on school nights and whether or		
	not they have assigned chores at home. Is there evidence that		
	those who have a curfew also tend to have chores?		
	DI: Numeration & Whole Numbers		
	DII: Fractions & Decimals		
	DIII: Problem Solving with Percent		
	DIV: Geometry & Measurement		
	DV: Pre-Algebra		

Summary: 16/35 = 46% correlation